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a b s t r a c t

This paper provides a method for obtaining the harmonic Green’s function for flexural

waves in semi-infinite plates with arbitrary boundary conditions and a high frequency

approximation of the Green’s function in the case of convex polygonal plates, by using a

generalised image source method. The classical image source method consists in

contributions from the original source and virtual sources located outside of the plate,

which represent successive reflections on the boundaries. The proposed approach

extends the image source method to plates including boundaries that induce coupling

between propagating and evanescent components of the field and on which reflection

depends on the angle of incidence. This is achieved by writing the original source as a

Fourier transform representing a continuous sum of propagating and evanescent plane

waves incident on the boundaries. Thus, the image source contributions arise as

continuous sums of reflected plane waves. For semi-infinite plates, the exact Green’s

function is obtained for an arbitrary set of boundary conditions. For polygonal plates,

a high-frequency approximation of the Green’s function is obtained by neglecting

evanescent waves for the second and subsequent reflections on the edges. The method

is compared to exact and finite element solutions and evaluated in terms of its

frequency range of applicability.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Flexural vibrations of thin plate structures used in automotive, aeronautic and aerospace engineering applications are
highly responsible for radiated noise and structural damage, for which accurate predictive tools are crucial. In particular,
mid- and high-frequency vibrations of plates require the development of new methods and models due to the increasing
demand in terms of comfort and reliability of structures.

The knowledge of the harmonic Green’s function for flexural waves in a polygonal plate having arbitrary shape and
arbitrary boundary conditions is of valuable interest, for it can be considered as the most elementary and general problem
in many applications. Such has been the aim of a vast number of papers and monographs for various decades. The most
popular methods are based on modal expansion (see e.g. Refs. [1–7] and the references therein). However, analytical
modal expansion is limited to few geometries and sets of boundary conditions. Furthermore, modal expansion in general
All rights reserved.

fax: þ33 243833520.

s.fr, j.cuenca@soton.ac.uk (J. Cuenca), francois.gautier@univ-lemans.fr (F. Gautier),

www.elsevier.com/locate/jsvi
www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2011.11.006
mailto:jacques.cuenca.etu@univ-lemans.fr
mailto:j.cuenca@soton.ac.uk
mailto:francois.gautier@univ-lemans.fr
mailto:laurent.simon@univ-lemans.fr
dx.doi.org/10.1121/1.1287848


J. Cuenca et al. / Journal of Sound and Vibration 331 (2012) 1426–1440 1427
becomes impractical in the presence of high damping and at high frequencies, where modal density is significant, so that
considering modes individually is not appropriate. An implicit representation of Green’s function of a polygonal plate of
arbitrary shape and having arbitrary boundary conditions can be obtained by using the integral formulation [8]. The
numerical implementation of the integral formulation is performed by using the boundary element method (BEM) [9,10],
which relies on the discretisation of the boundary and is well-adapted to arbitrarily shaped enclosed domains. However,
the maximum discretisation interval must be significantly smaller than the wavelength, which is restrictive in terms of
computational efficiency at high frequencies.

Nowadays, the most commonly used numerical tools for predicting the vibrations of thin structures are finite element
methods (FEMs) (see e.g. Ref. [11]) and statistical energy analysis (SEA) [12]. Similar to BEM, FEM is known to provide solutions
that converge towards the exact solutions as the size of the elements tends to zero. However, its computational limitations with
frequency are comparable to those of BEM. On the other hand, SEA is applicable above a lower frequency limit and does not
present a higher frequency limit [13]. However, the main restrictions of classical SEA are that it provides spatially averaged power
for each substructure of the considered system and that narrow-band or harmonic excitation are difficult to deal with [14]. Both
FEM and SEA are well known and accepted by researchers and engineers and they are complementary in terms of their frequency
range of application. However, due to their intrinsic limitations, other methods have arisen, aiming at extending FEM to higher
frequencies or providing SEA with the capability of predicting the spatial distribution of vibrations within a given structure.
A complete review of such methods would be out of scope here and hence the reader is referred to Refs. [15–17] and the
references therein. An alternative method that has been given significant attention for mid- and high-frequency analysis is the
ray-tracing method. The latter allows to estimate the energy distribution inside enclosed spaces and has been used efficiently for
flexural motion in thin plates [15]. However, it is based on the assumption that every wave in the domain is uncorrelated from
any other, which makes it impossible for it to account for interferences. Furthermore, the ray method considers only propagating
waves, for which it is unable to predict the complete flexural wave field in a thin plate [18].

Recently, attention has been paid to the image source method as an alternative predictive tool for high frequency
flexural vibrations of polygonal plates. The classical image source method consists in representing successive wave
reflections on the boundaries of a point-driven polygonal plate as virtual sources. Such virtual sources are obtained from
successive symmetries of the original source with respect to the edges of the plate. Accordingly, the amplitudes of the
image sources are given as the product of the amplitude of the original source (i.e. the driving point) and the reflection
coefficients of the successive edges at which reflection occurs. Gunda et al. [19] showed that the image source method, as
commonly used in room acoustics [20], is efficient for obtaining the response of beams and rectangular plates with simply
supported and roller supported plates. In a previous paper [21], the authors examined the case of arbitrarily shaped convex
polygonal plates with all edges simply supported, by using the image source method. The method provides exact Green’s
functions of plates of four polygonal geometries and gives efficient approximations in the case of convex polygonal plates
of arbitrary geometry. The main feature of the method is that the accuracy of the computed responses increases with
frequency and structural damping, contrarily to modal expansion or finite element methods. Therefore, it can be used as an
alternative tool for studying the vibrations of polygonal plates at high frequencies and for highly damped regimes.

The fundamental limitation of the classical image source method is that it is restricted to the case of polygonal plates
with boundaries that are characterised by a constant reflection coefficient, which is the case for simply supported and
roller supported edges. Reflection on edges with more general boundary conditions, involves wave conversion between
propagating and evanescent components of the field and depends on the angle of incidence of waves and on frequency
[22]. The most extensive work on such types of boundary conditions has been done by Gunda et al. [23], who derived the
exact harmonic Green’s function of a semi-infinite plate in the particular cases of clamped and free edges. To the best of
our knowledge, the case of arbitrary boundary conditions has not been treated and needs further analysis.

The purpose of this paper is to extend the image source method to arbitrary boundary conditions in order to obtain exact
harmonic Green’s functions for semi-infinite plates and approximated harmonic Green’s functions for convex polygonal plates.
The key point of the method consists in describing the source as a continuous sum of plane waves. Using the reflection matrix of
each edge, the successive reflections on the boundaries are described by classical reflection laws for plane waves and are
interpreted as generalised image sources. The plate response is then obtained as a superposition of the image source
contributions.

The paper is organised as follows. First, the Green’s function of an infinite plate is expressed as a continuous sum of
propagating and evanescent plane waves, which describes the original source. A general expression of the exact harmonic
Green’s function of a semi-infinite plate is then obtained for an arbitrary set of boundary conditions. For polygonal plates,
the semi-infinite plate Green’s function is used at each edge for calculating the contributions of image sources, which
represent successive reflections of waves on the boundaries. The approximation of the contributions of image sources
corresponding to the second and subsequent reflections by neglecting evanescent waves is then discussed. The results are
compared to the exact solution on a square plate and to a finite element solution on an arbitrary polygonal plate, both
including simply supported and clamped edges.

2. Green’s function of an infinite plate

Consider an infinite plate harmonically excited at point r0 ¼ ðx0,m0Þ, perpendicularly to the ðx,mÞ plane, as shown in
Fig. 1. The time factor e�jot is implicit in the following, o being the excitation circular frequency, and the Sommerfeld



Fig. 1. Green’s problem for an infinite plate. r0, source point; r, observation point.
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radiation condition [24] is henceforth assumed. The Green’s function of flexural vibrations G1 follows the equation [22]

Dðr4
�k4

f ÞG1ðr,r0; kf Þ ¼ dðr�r0Þ, (1)

where the flexural rigidity D depends on Young’s modulus E, Poisson’s ratio n and the plate thickness h in the form

D¼
Eh3

12ð1�n2Þ
(2)

and the flexural wavenumber takes the form

kf ¼ o2 rh

D

� �1=4

, (3)

where r is the density of the plate material. According to the time dependence e�jot , structural damping is included in
Young’s modulus by writing

E¼ E0ð1�jZÞ, (4)

where Z is the structural damping ratio.
For modelling semi-infinite and polygonal plates, discussed later on in Sections 3 and 4, the Green’s function of the

infinite plate G1 describes the direct contribution of the source to the displacement field of the plate, which is also the
incident field on the boundaries. Thus, it is convenient to write G1 in rectangular coordinates in order to describe wave
reflection in a local coordinate system for each boundary. For such purpose, we use arbitrarily oriented coordinates ðx,mÞ,
where x is referred to as the axial coordinate, collinear to a given boundary, and m is referred to as the transverse
coordinate, normal to the boundary. The Green’s function G1 is then obtained using one-dimensional Fourier transform of
Eq. (1) on coordinate x, as detailed in Appendix A, and can be written as

G1ðx,m,x0,m0; kf Þ ¼
j

8pk2
f D

Z þ1
�1

ejkxðx�x0Þ
ej

ffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

p
9m�m09ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
f �k2

x

q þ j
e�

ffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

p
9m�m09ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
f þk2

x

q
0
B@

1
CA dkx, (5)

which appears as a sum of plane waves. Fig. 2 shows the transverse wavenumbers kð1Þm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
and kð2Þm ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

q
as

functions of the axial wavenumber kx. As a convention, the principal square root (i.e. the root whose real part is positive) is

henceforth used. From Fig. 2 and Eq. (5), it can be observed that the term ej
ffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

p
9m�m09=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
represents a propagating

wave for 9kx9o9kf 9 and an evanescent wave for 9kx949kf 9. Similarly, the term je�
ffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

p
9m�m09=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

q
represents an

evanescent wave for all values of kx. Note that the flexural wavenumber kf is complex because of structural damping, as

defined in Eq. (4), and has an imaginary part that is small compared to its real part. This implies that the propagating term
presents a slight decrease in amplitude with distance and that the evanescent term presents a slow oscillatory behaviour.



Fig. 3. Green’s problem for a semi-infinite plate. r0, original source; rs , image source; r, observation point.

Fig. 2. Transverse wavenumbers as functions of kx . Lower curve, kð1Þm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
; upper curve, kð2Þm ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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x

q
.
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3. Green’s function of a semi-infinite plate

3.1. Formulation of the problem

Considering a semi-infinite plate O, excited by a point source at r0 as represented in Fig. 3, Green’s function GO is the
solution of the generic set of equations

Dðr4
�k4

f ÞÞGOðr,r0; kf Þ ¼ dðr�r0Þ, r 2 O, ðaÞ

Boundary conditions, r 2 qO, ðbÞ

(
(6)

where the boundary conditions are here assumed to be linear and homogeneous along the edge. As in the case of the
infinite plate discussed above, the Sommerfeld radiation condition is here considered. The displacement field at r can be
obtained as the superposition of the infinite plate Green’s function G1 and the reflected field from the boundary, denoted
Gs, which is later on interpreted as the contribution of an image source located at point rs. The general solution of Eq. (6) is
then

GOðr,r0; kf Þ ¼ G1ðr,r0; kf ÞþGsðr,rs,mb; kf Þ, (7)

where mb is the location of the boundary, as depicted in Fig. 3, such that the location of the image source is
rs ¼ ðxs,msÞ ¼ ðx0,2mb�m0Þ. The aim of the following is to determine Gs in the most general case, i.e. without assuming
any particular set of boundary conditions for the edge.

The integrand of Eq. (5) contains two plane waves travelling from m0 in their respective half-planes m4m0 and mom0.
The latter represents a plane wave incident on the boundary qO, located along axis m¼ mb, which can be written as

wiðx,m,x0,m0,mb; kf Þ ¼ ejkxðx�x0ÞðAe�j
ffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

p
ðm�mbÞ þBe

ffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

p
ðm�mbÞÞ, (8)
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where

A¼
j

8pk2
f D

e�j
ffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

p
ðmb�m0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
f �k2
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p
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k2
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x

q : (9)

Similarly, the reflected wave is a superposition of a propagating term and an evanescent term, in the form

wrðx,m,x0,m0,mb; kf Þ ¼ ejkxðx�x0ÞðCej
ffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

p
ðm�mbÞ þDe�

ffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

p
ðm�mbÞÞ, (10)

where C and D are obtained by applying the boundary conditions to the superposition of incident and reflected waves. The
relation between A, B, C and D is then given by

C

D

� �
¼ R

A

B

� �
, (11)

where

Rðkx,kf Þ ¼
Rppðkx,kf Þ Repðkx,kf Þ

Rpeðkx,kf Þ Reeðkx,kf Þ

" #
(12)

is the reflection matrix of the boundary. Each term of the form Rir represents wave conversion from incident wave i to
reflected wave r, where i and r denote propagating (p) or evanescent (e) components. The left column of the reflection
matrix contains the reflection coefficients for an incident propagating wave and can be obtained by applying the boundary
conditions to the superposition of incident and reflected waves wi and wr letting B¼0. The same holds for the right column
of the reflection matrix with A¼0.

The total reflected field Gs is the superposition of an infinite number of elementary waves in the form of Eq. (10) and it
is thus obtained by integrating Eq. (10) over kx 2 R. A further step consists in interpreting the reflected field as the
contribution of the image source to the total flexural wave field. This is done by performing the changes of variables xs ¼ x0

and mb�m0 ¼�ðmb�msÞ (see Fig. 3). Thus, the image source contribution is obtained in the form

Gsðr,rs,mb; kf Þ ¼
j

8pk2
f D

Z þ1
�1

ejkxðx�xsÞ
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k2

f �k2
x

p
ðmb�msÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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x

q

j
e�

ffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

p
ðmb�msÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
f þk2

x

q

2
666666664

3
777777775

dkx: (13)

Eq. (13) represents a sum of plane waves, where the integrand can be interpreted as a wave with a propagating component
along axis x and both propagating and evanescent components on axis m, travelling along a distance mb�m0, reflected at the
boundary m¼ mb and then travelling along a distance m�mb. The expression of Green’s function of the semi-infinite plate
GO is then given by Eq. (7), with G1 given by Eq. (5) and Gs given by Eq. (13). The applicability of the present approach to a
semi-infinite plate with a given set of boundary conditions is subjected to the condition that the corresponding reflection
matrix is known in the form appearing in Eq. (13), e.g. as obtained by the methods described in Refs. [22,25,26].

At this point, it should be noted that the present approach for obtaining Green’s function of a semi-infinite domain is a
generalisation of the classical image source method. In fact, the latter was originally developed given some assumptions on
the boundary conditions, which lead to a simplified form of the image source contribution, as detailed hereafter. The first
assumption in the classical image source method is that the reflection of a flexural wave on a boundary does not induce
conversion between propagating and evanescent components. This renders it applicable only to particular boundary
conditions in which the corresponding reflection matrix is diagonal, i.e. the terms Rep and Rpe are zero, which simplifies the
image source contribution. Another restriction of the classical image source method is the fact that wave reflection on the
boundary is assumed to be independent from the angle of incidence of waves or, more generally, from the wavenumber
component kx used herein. Thus, considering such assumptions in Eq. (13) yields a simplified form of Gs which is
applicable to particular boundary conditions such as the commonly encountered cases of simply supported and roller
supported edges, as used in previous studies [19,21]. The explicit expression of the image source contribution in those
cases is given in Appendix B.

In the present case, the further generality of the boundary conditions requires the reflected field to be written in the
form of Eq. (13). In particular and unlike in the classical image source method, it includes an explicit dependence on the
location of the boundary, mb, which is necessary in order to account for the coupling between the incident and reflected
propagating and evanescent waves.



Table 1
Boundary conditions and corresponding reflection matrices for a simply supported, roller, clamped or free edge at m¼ mb .

Boundary conditions Reflection matrix Rðkx ,kf Þ

Simply supported wðx,mbÞ ¼ 0

Mmðx,mbÞ ¼ 0

(
�1 0

0 �1

� �

Roller qw

qmðx,mbÞ ¼ 0

Vmðx,mbÞ ¼ 0

8><
>:

1 0

0 1

� �
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qw
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>: �
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3.2. Examples of Green’s functions for semi-infinite plates with simply supported, roller supported, clamped or free edges

To the best of our knowledge, the most significant work so far on determining explicit expressions of Green’s functions
for flexural waves in semi-infinite plates has been done by Gunda et al. [23], where the Green’s functions of clamped and
free semi-infinite plates are obtained by applying appropriate corrections respectively to the simply supported and roller
boundary conditions. Such expressions are thus used as a benchmark for the present approach, as detailed below.

Table 1 summarises the boundary conditions of simply supported, roller, clamped and free edges and their
corresponding reflection matrices, where w and qw=qm respectively denote the normal displacement and the slope along
direction m, and

Mm ¼�D
q2w

qm2
þn q

2w

qx2

 !
(14)

and

Vm ¼�D
q3w

qm3
þð2�nÞ q3w

qx2qm

 !
(15)

respectively denote the bending moment and the total shear force.
By replacing the reflection matrix of a simply supported, roller, clamped or free edge in Eq. (13), it can be verified that

Green’s function given by Eq. (7) is identical to Eqs. (19), (22), (44) and (62) of Ref. [23], respectively. The main advantage
of the present method is that it provides the Green’s function of a semi-infinite plate regardless of the specific boundary
conditions, as long as the corresponding reflection matrix is known.

4. Approximation of the Green’s function of a convex polygonal plate

4.1. Formulation of the problem

Considering a polygonal plate O, as depicted in Fig. 4, the Green’s function GO is the solution of the generic set of Eq. (6),
where the boundary qO forms a closed line and thus yields an infinite number of reflections in the plate, which are in turn
described by an infinite number of image sources. In addition to specular wave reflection, described by image sources, the
plate corners induce an additional contribution to the field, corresponding to wave diffraction [27,28]. However, the



Fig. 4. Green’s problem for a convex polygonal plate. r0, original source; rs , image source of first order; rs0 , image source of second order; r, observation

point; � � � � � �, validity zones of image sources.
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corresponding correction terms are significant only at low frequencies, as shown by Gunda et al. [29]. On that account, we
propose an approximation of the Green’s function of the polygonal plate in the form of a superposition of the contributions
from the original source and the image sources, as

~GOðr,r0; kf Þ ¼ G1ðr,r0; kf Þþ
X1
s ¼ 1

Gsðr,rs,mðsÞb ; kf Þ, (16)

where the terms Gs represent the contributions of image sources to the displacement field, s being the image source index.
The aim of the following is to determine the image source contributions Gs.

4.2. Geometrical construction of image sources

Wave reflections at the boundaries of the domain are described by means of image sources, which are obtained by
successive symmetries of the original source on the different plate edges. Thus, for a polygonal plate having Nv vertices, the
original source generates Nv sources, one with respect to each edge. Subsequently, each image source generates Nv�1 new
image sources. The pattern resulting from such geometrical procedure corresponds to what one would observe by standing
with a source of light in a polygonal room made of mirrors. The location of an image source s originating at edge p from a
source located at rm, i.e. its ‘‘mother’’ source, takes the form

rs ¼�rmþ2vpþ2
ðrm�vpÞ � ðvpþ1�vpÞ

9vpþ1�vp9
2

ðvpþ1�vpÞ, (17)

where vp and vpþ1 are the locations of the vertices of the generator edge, as illustrated in Fig. 4.
Furthermore, the edges of the plate are of finite length. As shown by Mechel [20], the reflected field giving rise to a

given image source is therefore valid in the zone delimited by the image source position rs and the vertices vp and vpþ1 of
the generator edge, as represented by the dotted lines in Fig. 4. The geometrical validity conditions of an image source
located at rs for an observation point r are given by

ððvpþ1�rsÞ � ðr�rsÞÞ � z40, ðaÞ

ððr�rsÞ � ðvp�rsÞÞ � z40, ðbÞ

(
(18)

where � denotes cross product and z is the unitary vector such that ðx,y,zÞ forms a right-handed basis. The validity
conditions are included in a function Vðr,rsÞ such that

Vðr,rsÞ ¼
1 in the validity zone,

0 elsewhere:

(
(19)
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4.3. First wave reflection on the boundaries

The contributions of the image sources of first order, i.e. directly generated from the original source at each one of the
edges, can be computed using the approach developed above for semi-infinite plates, i.e. from Eq. (13), using a local
coordinate system ðx,mÞ for each edge. Each image source contribution is then valid in the area defined by function Vðr,rsÞ.
For a plate having Nv vertices, the contributions of image sources of first order, i.e. the first Nv image sources, can be
expressed as

GðIÞs ðr,rs,mðsÞb ; kf Þ ¼ Vðr,rsÞ
j
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dkx, (20)

where m¼ mðsÞb defines the boundary giving rise to source s in the local coordinate system ðx,mÞ, i.e. the symmetry axis
between r0 and rs, and RðsÞir are the different terms of the corresponding reflection matrix, which couples incident (i) waves
from the original source to reflected (r) waves.
4.4. Second and subsequent wave reflections on the boundaries

The contribution of an image source of first order acts in turn as the incident field on another boundary and generates an
image source of second order. The exact form of the contribution of an image source of second order cannot be derived using the
same procedure as for image sources of first order and an approximation is proposed, as detailed in the following. In the above
derivation, leading to the contribution of an image source of first order, the incident and reflected fields are considered as sums of
plane waves expressed in the local coordinate system ðx,mÞ of the edge where the reflection occurs. The incident and reflected
plane waves are written in a separated-variable form in Eqs. (8) and (10), respectively, which both include a propagating
component along the x axis and a superposition of propagating and evanescent components along the m axis, making it possible
to use a reflection matrix for plane waves, Eq. (12). However, a propagating wave with amplitude decreasing along its front
cannot be written in such separated-variable form using two different coordinate systems in the general case, as detailed in
Appendix C. As a consequence, an individual plane wave resulting from the first reflection, i.e. Eq. (10), cannot be written in the
form of Eq. (8) in the local coordinate system of another edge where a second reflection may take place. Therefore, the
contribution of image sources of second and higher orders cannot be obtained in its complete form from the concept of individual
plane wave reflection. For the purposes of the present paper, no attempt is made to compute the exact expression, which would
require a rather different approach. However, the wavelength being sufficiently short compared to the plate dimensions, the
evanescent components can be neglected, thus solving the difficulty of the coordinate change. The contributions of the image
sources associated to the second and subsequent wave reflections on the boundaries are then approximated by their propagating
component, in the form

GðIIÞs ðr,rs; kf Þ ¼ Vðr,rsÞ
j

8pk2
f D

Z 9kf 9

�9kf 9
ejkxðx�xsÞAðsÞppðkx,kf Þ
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k2
f �k2

x

q dkx, (21)

where AðsÞpp is the amplitude weight of image source s, resulting from the successive reflections of propagating waves. In the

considered integration domain, defined by �9kf 9okxo9kf 9, the transverse wavenumber coordinate km ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
is real, as

shown in Fig. 2, such that the wavenumber coordinates kx and km are related to the flexural wavenumber by

k2
f ¼ k2

xþk2
m: (22)

Alternatively, the use of wavenumber polar coordinates yields

kx ¼ 9kf 9 cos ðyÞ, (23)

where y is the orientation of the plane propagating wave defined by kx with respect to the reflecting edge, as shown in Fig. 4.

Thus, the amplitude weight AðsÞpp is obtained as the product of the scalar reflection coefficients Rpp of the edges that successively

participate in the construction of image source s, in the form

AðsÞppðyÞ ¼
YNðsÞ

n ¼ 1

RðsÞn ðy,anÞ, (24)
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where n¼ 1, . . . ,NðsÞ denotes the order of reflection on edges for each image source s and an is the orientation of edge n with
respect to the global coordinate system (x,y), as illustrated in Fig. 4.

At this point it is important to notice that some particular types of edges present reflection properties that are independent
from the angle of incidence of waves and do not induce wave conversion, which implies that the associated reflection matrix is
constant and diagonal. This is the case for simply supported and roller supported edges, for example. For plates having exclusively
such kinds of boundary conditions, each image source contribution is obtained simply from the product of the contribution of its
mother source by the reflection coefficient of the edge, as detailed in Appendix B. In those cases, the exact form of the
contribution of an image source of any reflection order is known and there is no need of neglecting evanescent waves.

4.5. Approximated Green’s function and domain of applicability

The approximated Green’s function of the polygonal plate is obtained from Eq. (16), by considering Eqs. (5), (20) and
(21) for the original source, first and second-order image sources, respectively, in the form

~GOðr,r0; kf Þ ¼ G1ðr,r0; kf Þþ
XNv

s ¼ 1

GðIÞs ðr,rs,mðsÞb ; kf Þþ
X1

s ¼ Nv þ1

GðIIÞs ðr,rs; kf Þ, (25)

where Nv is the number of vertices or edges of the plate. The solution is then known for arbitrary boundary conditions as
long as the reflection matrix of the edges are known in the form of Eq. (12). The obtained Green’s function is an
approximation based on neglecting evanescent waves in the calculation of the contributions of second-order image
sources, GðIIÞs . In fact, the displacement field related to the terms Repðkx,kf Þ, Rpeðkx,kf Þ and Reeðkx,kf Þ of the reflection matrices
is of low amplitude as long as both the source and the observation point are sufficiently distant from the edges. As a
consequence, the proposed solution is inaccurate in the nearfield of the edges. In particular, the approach is not adapted to
plates including sharp angles, since a given edge may be in the nearfield of another edge, leading to cumulative errors in
the construction of image sources. The convergence of the series in Eq. (25) is then subjected to the distance from the
source (and/or the observation point) to the edges, relatively to the wavelength. Furthermore, the damping ratio Z of the
plate material also governs the convergence of the solution since a low number of reflections is needed to accurately
compute the field in a highly damped plate.

5. Numerical implementation

In this section, the numerical implementation of Eq. (25) is discussed. By formulating Eq. (21) as

GðIIÞs ðr,rs; kf Þ ¼ Vðr,rsÞ
j
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where

u
kx

29kf 9

 !
¼

1, kx 2 ½�9kf 9,9kf 9�,

0 elsewhere

(
(27)

is the rectangular window function of span 29kf 9 centred on kx ¼ 0, the integral in Eqs. (20) and (26) is interpreted as an
one-dimensional inverse spatial Fourier transform from wavenumber coordinate kx to space coordinate x. The numerical
Fig. 5. Square plate with three simply supported (SS) edges and one clamped (C) edge.
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implementation of such expressions is performed by using discrete inverse spatial Fourier transform in order to take
advantage of a fast Fourier transform algorithm in terms of computational efficiency.

Furthermore, practical implementation requires the image source series to be truncated. Thus, image sources outside a
truncation circle of radius rt are ignored. The dimensionless parameter g is used for controlling the truncation distance
with respect to an arbitrary characteristic length rc of the plate, in the form

g¼ rt

rc
, (28)
Fig. 6. Amplitude of Green’s function for the square plate. (a) Exact; (b) proposed method; (c)–(g) displacement field on vertical lines l1 to l5; —, exact;

� � � � � �, proposed method. (h) Error as a function of abscissa, from Eq. (30).



J. Cuenca et al. / Journal of Sound and Vibration 331 (2012) 1426–14401436
where, by respectively denoting S and p the total area and the perimeter of the plate, rc is taken as

rc ¼
pS

p
, (29)

which is the average distance between two successive image sources, also referred to as the mean free path of waves in the
plate [12].

6. Results

In this section, the harmonic responses of different polygonal plates with various boundary conditions are computed
and compared to exact or numerical solutions of reference. The main purpose is to validate the present method and to
evaluate the errors due to neglecting edge effects. Two plates are tested: a Levy-type plate, for which the analytical Green’s
function is known, and an arbitrary polygonal plate, for which the response is computed by using the finite element
method (FEM). For both plates, one edge is clamped and the others are simply supported.

6.1. Levy-type plate: comparison to the exact solution

There exist only few sets of boundary conditions leading to an analytical expression of the response of a polygonal plate
[6]. Rectangular plates with two opposite edges simply supported, i.e. Levy-type plates, are well-known configurations
allowing an analytical solution [7,22]. A square plate, as shown in Fig. 5, is here considered, with simply supported edges
along y¼0, y¼L and x¼0, and a clamped edge along x¼L.

In the following, the side length of the plate is L¼ 1 m and the thickness is h¼ 2 mm. The plate material is steel, with
density r¼ 7850 kg m�3, Young’s modulus E0 ¼ 210 GPa and Poisson’s ratio n¼ 0:3. The structural damping ratio is chosen
as Z¼ 0:07. The plate is excited by a harmonic point source at r0 ¼ ð0:41 m,0:3 mÞ at the frequency f ¼ 3 kHz. At this
frequency, the modal overlap factor [21] is equal to 42, i.e. there is an average of 42 resonances in a �3 dB resonance band,
which indicates that the computation is done in a significantly high-frequency regime. The solution of reference is
obtained analytically by classical modal superposition [22], to which is compared the solution obtained by the proposed
method, with g¼ 6 (488 sources). The number of points for the fast Fourier transform is NF¼1024.

In order to quantify the accuracy of the proposed method, an error indicator is computed for each vertical line of the plate, as

eðxÞ ¼
PN

i ¼ 1 9wðx,yiÞ�wðrefÞðx,yiÞ9
2

PN
i ¼ 1 9wðrefÞðx,yiÞ9

2
, (30)

where N is the number of points on the vertical line at abscissa x and where wðx,yiÞ and wðrefÞðx,yiÞ are respectively the
displacement fields obtained by the present method and from the reference solution. Eq. (30) thus represents a mean quadratic
error on each vertical line of the plate, normalised by the mean quadratic value of the reference solution.

Fig. 6(a) and (b) shows the real part of the Green’s function, respectively obtained by the exact solution and the
proposed approximation. Fig. 6(c)–(g) shows the displacement field on vertical lines l1 to l5, respectively defined by
x1 ¼ 0:013L, x2 ¼ 0:484L, x3 ¼ 0:956L, x4 ¼ 0:972L and x5 ¼ 0:987L. Furthermore, Fig. 6(h) shows the error e as a function of
x. The agreement is satisfactory in the whole plate, except near the clamped edge, within a distance comparable to half the
wavelength, which in the present case is equal to l=2¼ 0:0405L¼ 4:05 cm.
Fig. 7. Polygonal plate for comparison of the proposed approach to FEM with clamped (C) and simply supported (SS) boundaries. r0 ¼ ð0:125,0:3Þ, source;

r1 ¼ ð0:245778,0:350778Þ, r2 ¼ ð0:245778,0:073775Þ and r3 ¼ ð0:245778,0:058386Þ, observation points. Coordinates are in meters.
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Simply supported edges do not induce wave conversion between propagating and evanescent components, as observed
in the corresponding reflection matrix in Table 1. In fact, edge effects near such boundaries are of low influence on the
global displacement field since they correspond to pure evanescent waves generated at the source that reflect back. On the
other hand, as recalled in Table 1, the reflection matrix of the clamped edge involves wave conversion between
propagating and evanescent waves. Thus, propagating waves incident on the clamped boundary give rise to evanescent
waves, which are neglected for sources of second and higher orders. As a consequence, higher discrepancies appear near
the clamped edge.
6.2. Arbitrary polygonal plates: comparison to FEM

In order to validate the proposed method in a more general configuration, an arbitrary polygonal plate is considered, as
shown in Fig. 7.

The response of the plate is computed as a function of frequency at three different observation points, r1, r2 and r3, for a
point source at r0, for two different values of the structural damping ratio, Z¼ 0:07 and Z¼ 0:14, by the proposed method
and by FEM.
Fig. 8. Modulus of Green’s function of the polygonal plate as a function of frequency computed by the proposed method (� � � � � �) and by FEM (—), for

Z¼ 0:07 (left column) and Z¼ 0:14 (right column), at points (a,b) r1, (c,d) r2 and (e,f) r3. (h,g) Error at points: —, r1; - - - - -, r2; � � � � � �, r3.
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For obtaining the plate response as a function of frequency, the computation detailed above is performed at 99 different
frequencies, from 80 Hz to 8 kHz, with the truncation parameter set to g¼ 4. The number of points of the fast Fourier
transform is NF¼1024. A total of 46 056 nodes is considered in the finite element model, giving rise to 91 319 linear
triangular elements. The average element length is 3 mm and the eigenmodes are computed up to the frequency 12 kHz, at
which the wavelength is greater than 13 times the average element length.

The error of the response for a given observation point in the plate is computed by using an indicator as a function of
frequency, given by

eðf Þ ¼
9wðf Þ�wðrefÞðf Þ92

1

N

PN
i ¼ 1 9wðrefÞðf iÞ9

2
, (31)

where N is the number of frequencies for the computation of the response and w(f) and wðrefÞðf Þ are the responses
computed, respectively, by the proposed method and by FEM at a given point. Eq. (31) thus represents the quadratic error
at each frequency, normalised by the mean quadratic value of the reference solution over the frequency range of the
simulations.

Fig. 8 shows the modulus of Green’s function as a function of frequency, for the chosen parameters. The computed
responses are in accordance with the finite element predictions in the central region of the plate, as observed on the
displacement fields at the selected observation points r1 and r2. As the observation point reaches the clamped boundary at
point r3, the image source method no longer predicts the field accurately. Moreover, Fig. 8 shows that the accuracy of the
proposed method increases with frequency and structural damping ratio. That is to say that, for a given accuracy to be
reached, the number of needed image sources decreases with frequency and damping. Such behaviour of the accuracy is
opposite to that of the finite element method, which is limited in terms of computational time to low frequencies and high
quality factors.
7. Conclusion

This paper provides a method for obtaining the harmonic Green’s function of the flexural vibrations of thin semi-
infinite plates and an approximation of Green’s function of convex polygonal plates by using a generalised image source
method. The latter consists in considering the Green’s function of a semi-infinite or finite domain as the superposition of the
contributions from the original source and its image sources with respect to the boundaries, which represent successive
wave reflections. The original source contribution is described by the infinite plate Green’s function, and is written as a
continuous sum of propagating and evanescent plane waves, incident on the boundaries. The contributions of image sources
thus arise as continuous sums of reflected plane waves. For semi-infinite plates, a general expression of the exact Green’s
function is obtained for arbitrary boundary conditions, as long as the reflection matrix of the boundary is known. For
polygonal plates, the image sources representing the first reflection at each one of the edges are obtained from the Green’s
function of the corresponding semi-infinite plate in the local coordinate system of the edge at which reflection occurs. The
plane waves therein are in a separated variable form that cannot be transposed to local coordinate systems of other edges.
Therefore, the contributions of image sources representing the second and subsequent reflections on boundaries cannot be
obtained in their complete form. However, after the second reflection and at high frequencies, the distance travelled by
waves is much larger than their wavelength. An approximation of the Green’s function is then written by neglecting
evanescent waves in the calculation of the image sources of second and subsequent orders. Comparisons to exact and finite
element method simulated responses show that the displacement field is accurately predicted outside the nearfield area of
the edges, which decreases with frequency and structural damping. The approximations of the Green’s functions obtained by
the proposed method are applicable to any set of boundary conditions of which the reflection matrices are known.

A significant advantage of the method developed in this paper is that wave propagation, geometry and boundary
conditions can be treated separately. Work is ongoing along this direction for using it as a tool for modelling and
characterising mid- and high-frequency vibrations of plates of complex shapes and arbitrary boundary conditions.
Appendix A. Green’s function of an infinite plate in rectangular coordinates

By defining one-dimensional spatial Fourier transform and inverse transform as

wðkx,mÞ ¼F x½wðx,mÞ� ¼ 1ffiffiffiffiffiffi
2p
p

Z þ1
�1

wðx,mÞe�jkxx dx (32)

and

wðx,mÞ ¼F�1
x ½wðkx,mÞ� ¼ 1ffiffiffiffiffiffi

2p
p
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�1

wðkx,mÞejkxx dkx: (33)
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Fourier transform of Eq. (1) yields
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 !
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2p
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Using the associated homogeneous equation and taking into account Sommerfeld radiation condition [24] and the
continuity of the displacement field at m¼ m0 yields the Fourier transform of Green’s function in the form

G1ðkx,m,x0,m0; kf Þ ¼ Aejkð1Þm 9m�m09þBejkð2Þm 9m�m09, (35)
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q
, kð2Þm ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

q
: (36)

The expressions of A and B are obtained by integrating Eq. (34) on the interval m 2 ½m0�e,m0þe� with e-0 and using the
property of continuity of the slope at m0. Green’s function in the spatial domain is then obtained by inverse Fourier
transform and is given in Eq. (5).

Appendix B. Image source contribution in the case of reflection without angular dependence

The purpose of this appendix is to give the expression of the image source contribution used in the classical image
source method, which arises as a particular case of the approach proposed herein, in the case where the boundary
conditions are described by a reflection matrix of the form

Rðkx,kf Þ ¼
R 0

0 R

� �
: (37)

This is the case in particular for simply supported (R¼�1) or roller (R¼1) boundary conditions (see Table 1).
For a semi-infinite plate, it can be observed from Eq. (13) that, in the particular case of a reflection matrix proportional

to the identity matrix, the image source contribution is described by the infinite plate Green’s function multiplied by the
constant reflection coefficient, as

Gsðr,rs; kf Þ ¼ RG1ðr,rs; kf Þ, r 2 O: (38)

It is worth noting that the position of the boundary only appears implicitly in the location of the image source in Eq. (38)
due to the absence of coupling between propagating and evanescent components.

In the case of a polygonal plate in which the reflection matrices of the different boundaries are in the form of Eq. (37),
the integrand of Eq. (20) can be written in the form of Eq. (8) in the local coordinate system of the edge at which a second
reflection may take place. Thus, the contributions from image sources of any reflection order can be written as

Gsðr,rs; kf Þ ¼ Vðr,rsÞA
ðsÞG1ðr,rs; kf Þ, r 2 O, (39)

where AðsÞ is the amplitude weight of source s and is independent from the wavenumber coordinate kx. The amplitude
weight of source s is given by

AðsÞ ¼
YNðsÞ

n ¼ 1

RðsÞn , (40)

in which RðsÞn is the reflection coefficient of the edge number n that is needed for the construction of source s. Furthermore,
boundaries characterised by a reflection matrix satisfying Eq. (37) are a particular case allowing the calculation of exact
Green’s functions of several polygonal geometries, as shown in a previous paper [21].

Appendix C. Impossibility of variable separation for waves of multiple types in two different coordinate systems

As mentioned in Section 4.4, a wave that is propagating in one direction of space and attenuating in another cannot be
written in a separated-variable form in two different coordinate systems in the general case. This appendix aims at
Fig. 9. Two coordinate systems with different orientations.
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showing that explicitly. Two coordinate systems differing from an angle a by rotation about the z axis are considered, as
shown in Fig. 9.

A plane wave can be represented in coordinate system ðx,mÞ by the separated-variable expression

wðx,mÞ ¼ ejkxxejkmm, kx 2 R, km 2 C, (41)

where km ¼ kð1Þm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f �k2
x

q
or km ¼ kð2Þm ¼ j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

f þk2
x

q
. The coordinate change

x¼ x cosðaÞþy sinðaÞ,
m¼�x sinðaÞþy cosðaÞ

(
(42)

yields the expression of w in coordinate system (x,y) as

wðx,yÞ ¼ eðjkx cosðaÞ�jkm sinðaÞÞxeðjkx sinðaÞþ jkm cosðaÞÞy: (43)

It is easily observed that there does not exist a pair ðkx,kyÞ that satisfies

ejkxxejkyy ¼ ejkxxejkmm, kx 2 R, ky 2 C: (44)
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